Search results for "Markov random fields"

showing 6 items of 6 documents

An autoregressive approach to spatio-temporal disease mapping

2007

Disease mapping has been a very active research field during recent years. Nevertheless, time trends in risks have been ignored in most of these studies, yet they can provide information with a very high epidemiological value. Lately, several spatio-temporal models have been proposed, either based on a parametric description of time trends, on independent risk estimates for every period, or on the definition of the joint covariance matrix for all the periods as a Kronecker product of matrices. The following paper offers an autoregressive approach to spatio-temporal disease mapping by fusing ideas from autoregressive time series in order to link information in time and by spatial modelling t…

Statistics and ProbabilityEpidemiologyComputer sciencecomputer.software_genreBayesian statisticsspatial statisticsBayes' theoremsymbols.namesakeMarkov random fieldsEconometricsDiseaseSpatial analysisParametric statisticsDemographyKronecker productCovariance matrixBayes TheoremField (geography)Bayesian statisticsEpidemiologic StudiesAutoregressive modelSpainsymbolsRegression AnalysisData miningcomputer
researchProduct

The Max-Product Algorithm Viewed as Linear Data-Fusion: A Distributed Detection Scenario

2019

In this paper, we disclose the statistical behavior of the max-product algorithm configured to solve a maximum a posteriori (MAP) estimation problem in a network of distributed agents. Specifically, we first build a distributed hypothesis test conducted by a max-product iteration over a binary-valued pairwise Markov random field and show that the decision variables obtained are linear combinations of the local log-likelihood ratios observed in the network. Then, we use these linear combinations to formulate the system performance in terms of the false-alarm and detection probabilities. Our findings indicate that, in the hypothesis test concerned, the optimal performance of the max-product a…

FOS: Computer and information sciencesfactor graphsComputer scienceComputer Science - Information TheoryMarkovin ketjut02 engineering and technologyMarkov random fieldsalgoritmit0202 electrical engineering electronic engineering information engineeringMaximum a posteriori estimationmax-product algorithmElectrical and Electronic EngineeringLinear combinationStatistical hypothesis testingdistributed systemsMarkov random fieldspectrum sensingApplied MathematicsNode (networking)Information Theory (cs.IT)linear data-fusionApproximation algorithm020206 networking & telecommunicationsComputer Science Applicationssum-product algorithmPairwise comparisonRandom variableAlgorithmstatistical inference
researchProduct

[IC‐P‐029]: GAUSSIAN MARKOV RANDOM FIELDS FOR ASSESSING INTERMODAL REGIONAL ASSOCIATIONS IN PRODROMAL ALZHEIMER's DISEASE

2017

Psychiatry and Mental healthCellular and Molecular NeuroscienceDevelopmental NeuroscienceEpidemiologyHealth PolicyNeurology (clinical)DiseaseGeriatrics and GerontologyGaussian markov random fieldsPsychologyDevelopmental psychologyCognitive psychologyAlzheimer's & Dementia
researchProduct

On the convenience of heteroscedasticity in highly multivariate disease mapping

2019

Highly multivariate disease mapping has recently been proposed as an enhancement of traditional multivariate studies, making it possible to perform the joint analysis of a large number of diseases. This line of research has an important potential since it integrates the information of many diseases into a single model yielding richer and more accurate risk maps. In this paper we show how some of the proposals already put forward in this area display some particular problems when applied to small regions of study. Specifically, the homoscedasticity of these proposals may produce evident misfits and distorted risk maps. In this paper we propose two new models to deal with the variance-adaptiv…

Statistics and ProbabilityHeteroscedasticityMultivariate statisticsComputer scienceDiseaseJoint analysisMachine learningcomputer.software_genreBayesian statistics01 natural sciencesGaussian Markov random fields010104 statistics & probability03 medical and health sciences0302 clinical medicineHomoscedasticity0101 mathematicsMultivariate disease mappingSpatial analysisMortality studiesInterpretation (logic)Spatial statisticsbusiness.industryBayesian statisticsEstadística bayesianaMalalties030211 gastroenterology & hepatologyArtificial intelligenceStatistics Probability and Uncertaintybusinesscomputer
researchProduct

On the use of adaptive spatial weight matrices from disease mapping multivariate analyses

2020

Conditional autoregressive distributions are commonly used to model spatial dependence between nearby geographic units in disease mapping studies. These distributions induce spatial dependence by means of a spatial weights matrix that quantifies the strength of dependence between any two neighboring spatial units. The most common procedure for defining that spatial weights matrix is using an adjacency criterion. In that case, all pairs of spatial units with adjacent borders are given the same weight (typically 1) and the remaining non-adjacent units are assigned a weight of 0. However, assuming all spatial neighbors in a model to be equally influential could be possibly a too rigid or inapp…

Multivariate statisticsEnvironmental EngineeringMultivariate analysisSpatial weights matrixInferenceProcessos estocàsticsContext (language use)Adaptive conditional autoregressive distributionsEstadísticaGaussian Markov random fieldsMatrix (mathematics)StatisticsMalaltiesEnvironmental ChemistryAdjacency listSpatial dependenceMultivariate disease mappingSafety Risk Reliability and QualityRandom variableGeneral Environmental ScienceWater Science and TechnologyMathematics
researchProduct

Optimization of Linearized Belief Propagation for Distributed Detection

2020

In this paper, we investigate distributed inference schemes, over binary-valued Markov random fields, which are realized by the belief propagation (BP) algorithm. We first show that a decision variable obtained by the BP algorithm in a network of distributed agents can be approximated by a linear fusion of all the local log-likelihood ratios. The proposed approach clarifies how the BP algorithm works, simplifies the statistical analysis of its behavior, and enables us to develop a performance optimization framework for the BP-based distributed inference systems. Next, we propose a blind learning-adaptation scheme to optimize the system performance when there is no information available a pr…

hajautetut järjestelmätComputer scienceInference02 engineering and technologyBelief propagation01 natural sciencesMarkov random fieldsalgoritmit0202 electrical engineering electronic engineering information engineering0101 mathematicsElectrical and Electronic Engineeringtilastolliset mallitdistributed systemsbelief-propagation algorithmRandom fieldMarkov chainspectrum sensingverkkoteoriasignaalinkäsittely010102 general mathematicslinear data-fusionApproximation algorithm020206 networking & telecommunicationsCognitive radioblind signal processingAlgorithmWireless sensor networkRandom variablestatistical inference
researchProduct